

Dealing with System Monocultures

Angelos Keromytis
Computer Science Departmet

Columbia University
New York, NY, USA

angelos@cs.columbia.edu

Vassilis Prevelakis
Computer Science Department

Drexel University
Philadelphia, PA, USA

vp@cs.drexel.edu

ABSTRACT

Software systems often share common vulnerabilities that allow a single attack to compromise large numbers
of machines (write once, exploit everywhere). Borrowing from biology, several researchers have proposed
the introduction of artificial diversity in systems as a means for countering this phenomenon. The introduced
differences affect the way code is constructed or executed, but retain the functionality of the original system.
In this way, systems that exhibit the same functionality have unique characteristics that protect them from
common mode attacks. Over the years, several such have been proposed. We examine some of the most
significant techniques and draw conclusions on how they can be used to harden systems against attacks.

1. INTRODUCTION

The recent widespread disruptions of systems across the Internet underlined the inherent weakness of an
infrastructure that relies on large numbers of effectively identical systems. Common elements in these systems
include the operating system, the system architecture (e.g., Intel Pentium), particular applications (e.g., email,
Word processing software), and the internal network architecture. Common-mode attacks occur when an
attacker exploits vulnerabilities in one of these common elements to strike large numbers of victim machines.
If each of these systems were different, then the attacker would have to customize their technique to the
peculiarities of each system, thus reducing the scope of the attack and the rate of its spread.

However, running different systems in a network creates its own set of problems involving configuration,
management and certification of each new platform. In certain cases, running such multi-platform
environments can decrease the overall security of the network [1]. The premise of this paper is that by
introducing randomness in existing systems we can vary their behavior sufficiently to prevent common mode
attacks. Thus, our systems are similar enough to ease administration, but sufficiently different to resist
common mode attacks.

Randomization can be introduced in various parts of a system. Areas include the configuration of the network
infrastructure so that remote attackers cannot target a specific host or service (e.g., the White House site or the
Microsoft software update server), the implementation of specific protocols (e.g., changing some aspects of
the TCP/IP engine to reduce the risk of fingerprinting), or even the processor architecture to guard against
foreign code injections attacks. In this paper, we describe various randomization techniques and examine how
they can be used to strengthen the security of systems.

Paper presented at the RTO IST Symposium on “Adaptive Defence in Unclassified Networks”,
held in Toulouse, France, 19 - 20 April 2004, and published in RTO-MP-IST-041.

RTO-MP-IST-041 20 - 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Dealing with System Monocultures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Departmet Columbia University New York, NY, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001845, Adaptive Defence in Unclassified Networks (La defense adaptative pour les reseaux
non classifies)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. CLASSIFICATION

The diversification techniques that have been proposed over the years can be broadly classified into three
categories: those that modify the structure of the system, those that modify the execution environment, and
those that affect the system behavior. For example, systems such as StackGuard insert code that verifies the
integrity of the stack every time the code returns from a subroutine call, whereas the Instruction-Set
Randomization technique changes the instruction set of the processor so that unauthorized code will not run
successfully.

2.1 Modifying the Structure
Structure modification techniques insert special code that performs sanity or consistency checks at various
points in the execution of the program.

Perhaps the best-known of these techniques is StackGuard [2], a system that protects against buffer overflows.
This is a patch to the popular gcc compiler that inserts a canary word right before the return address in a
function’s activation record on the stack (Figure 1). The canary is checked just before the function returns,
and execution is halted if it is not the correct value, which would be the case if a stack-smashing attack had
overwritten it. This protects against simple stack-based attacks, although some attacks were demonstrated
against the original approach [3], which has since been amended to address the problem.

Top of Stack

Attack Code

buffer

Local Variables

Return Address

Process Address Space

0xFFFF

0x0000

Stack
Growth

Top of Stack

buffer

Local Variables

Return Address

Process Address Space

0xFFFF

0x0000

String
Growth

Canary Word

Figure 1: Stack buffer overflow (left) and StackGuard-modified stack frame (right).

Stack Guard is one of many similar systems such as MemGuard [2], FormatGuard [4], ProPolice [5], etc.
Generally, these approaches have three limitations. First, the performance implications (at least for some of
them) are non-trivial. Second, they do not seem to offer sufficient protection against stack-smashing attacks
on their own, as shown in [3, 6] (although work-arounds exist against some of the attacks). Finally, they do
not protect against other types of code-injection attacks, such as heap overflows [7]. For the purposes of our

20 - 2 RTO-MP-IST-041

Dealing with System Monocultures

discussion, however, these techniques have the problem that they make deterministic changes to the code, and
thus cannot protect against monoculture threats.

A system that is more applicable to this discussion is PointGuard [8] which encrypts all pointers while they
reside in memory and decrypts them only before they are loaded to a CPU register. This is implemented as an
extension to the gcc compiler, which injects the necessary instructions at compilation time, allowing a pure-
software implementation of the scheme. Another approach, address obfuscation [9], randomizes the absolute
locations of all code and data, as well as the distances between different data items. Several transformations
are used, such as randomizing the base addresses of memory regions (stack, heap, dynamically-linked
libraries, routines, static data, etc.), permuting the order of variables/routines, and introducing random gaps
between objects (e.g., randomly pad stack frames or malloc’ed regions). Although very effective against
jump-into-libc attacks, it is less so against other common attacks, due to the fact that the amount of possible
randomization is relatively small. However, address obfuscation can protect against attacks that aim to corrupt
variables or other data.

A persistent concern in employing techniques such as the ones described above, is to maintain the efficiency
of the application. In other words, the overheads associated with the use of these mechanisms must be
minimized. Naturally, this discourages the use of more exhaustive and hence more expensive techniques. If,
however, we can identify the parts of the code where a bug has a higher probability of resulting in a security
vulnerability, we can reserve the use of the more expensive mechanisms to these sensitive regions.

Tools developed under the DARPA funded CHATS/CoSAK project facilitate the identification of such
regions. This work is based on the assumption that a small percentage of functions near a source of input
(such as file I/O), called Inputs, are the most likely to contain a security vulnerability [17]. The original
hypothesis was confirmed by reviewing large numbers of bugs that have been posted in security forums such
as the CERT. These reports also include the patches that correct the bugs, thus identifying the code that was
responsible for the vulnerability (called Targets). The analysis of the existing systems revealed that Targets
tend to be located “near” Inputs (where “near” is defined as a number of function calls). With this
information, new systems can be analyzed by the CoSAK tools. The way they work is by examining the
source code of a computer system in order to identify the Inputs. Then a call graph of the entire system is
generated and the code appearing within a set number of function calls from the Inputs is pinpointed. Special
mechanisms (e.g. code emulation, execution under a virtual environment, or limitations on privileges) can be
activated when the flow of control strays into the sensitive regions.

2.2 Modifying the Environment
Systems do not exist in isolation but they need to interact with their environment (be it the processor
architecture, the operating system, the network topology, etc.). To see how randomization techniques can be
used to influence the execution environment let us look a bit closer at the problem of code-injection attacks.

Code-injection attacks attempt to deposit executable code (typically machine code, but there are cases where
intermediate or interpreted code has been used) within the address space of the victim process, and then pass
control to this code. These attacks can only succeed if the injected code is compatible with the execution
environment. For example, injecting x86 machine code to a process running on a SUN/SPARC system may
crash the process (either by causing the CPU to execute an illegal op-code, or through an illegal memory
reference), but will not cause a security breach. Notice that in this example, there may well exist sequences of
bytes that will crash on neither processor.

RTO-MP-IST-041 20 - 3

Dealing with System Monocultures

The instruction randomization technique [11] leverages this observation by creating an execution environment
that is unique to the running process, so that the attacker does not know the “language” used and hence cannot
“speak” to the machine. This is achieved by applying a reversible transformation between the processor and
main memory. Effectively, new instruction sets are created for each process executing within the same
system. Code-injection attacks against this system are unlikely to succeed as the attacker cannot guess the
transformation that has been applied to the currently executing process. Of course, if the attackers had access
to the machine and the randomized binaries through other means, they could easily mount a dictionary or
known-plaintext attack against the transformation and thus “learn the language”. However, we are primarily
concerned with attacks against remote services (e.g., http, dhcp, DNS, and so on). Vulnerabilities in this type
of server allow external attacks (i.e., attacks that do not require a local account on the target system), and thus
enable large-scale (automated) exploitation. Protecting against internal users is a much more difficult problem,
which we do not address in this work.

The power of the technique can be demonstrated by its applicability to other settings, such as SQL injection
attacks. Such attacks target databases that are accessible through a web front-end, and take advantage of flaws
in the input validation logic of Web components such as CGI scripts. The concept of instruction
randomization has been applied to that setting, to create instances of the SQL language that are unpredictable
to the attacker. Preliminary results indicate that the mechanism imposes negligible performance overhead to
query processing, and can be easily retrofitted to existing systems. The same technique can easily be applied
to any interpreted-language setting that is susceptible to code injection attacks.

In a different context, randomization of a system’s environment has been used to combat network-based
denial of service (DoS) attacks. The Secure Overlay Services (SOS) [18] approach addresses the problem of
securing communication on top of today's existing IP infrastructure from DoS attacks, where the
communication is between a predetermined location and users, located anywhere in the wide-area network,
who have authorization to communicate with that location. The scheme was later extended to support
unknown users, by using Graphic Turing Tests to discriminate between zombie machines and real humans
[19].

In a nutshell, the portion of the network immediately surrounding the target (location to be protected)
aggressively filters and blocks all incoming packets whose source addresses are not “approved”. The small set
of source addresses that are “approved” at any particular time is kept secret so that attackers cannot use them
to pass through the filter. These addresses are picked from among those within a distributed set of nodes
throughout the wide area network, that form a secure overlay: any transmissions that wish to traverse the
overlay must first be validated at entry points of the overlay. Once inside the overlay, the traffic is tunneled
securely for several hops along the overlay to the “approved” (and secret from attackers) locations, which can
then forward the validated traffic through the filtering routers to the target. The two main principles behind
this design are: (i) elimination of communication “pinch” points, which constitute attractive DoS targets, via a
combination of filtering and overlay routing to obscure the identities of the sites whose traffic is permitted to
pass through the filter, and (ii) the ability to recover from random or induced failures within the forwarding
infrastructure or among the overlay nodes.

The overlays are secure with high probability, given attackers who have a large but finite set of resources to
perform the attacks. The attackers also know the IP addresses of the nodes that participate in the overlay and
of the target that is to be protected, as well as the details of the operation of protocols used to perform the
forwarding. However, the assumption is that the attacker does not have unobstructed access to the network
core. That is, the model allows for the attacker to take over an arbitrary (but finite) number of hosts, but only a
small number of core routers. It is more difficult (but not impossible) to take control of a router than an end-
host or server, due to the limited number of potentially exploitable services offered by the former. While

20 - 4 RTO-MP-IST-041

Dealing with System Monocultures

routers offer very attractive targets to hackers, there have been very few confirmed cases where take-over
attacks have been successful. Finally, SOS assumes that the attacker cannot acquire sufficient resources to
severely disrupt large portions of the backbone itself (i.e., such that all paths to the target are congested).

Under these assumptions, by periodically selecting a new “approved” overlay node at random, a site can allow
only authorized clients to communicate with it. An attacker must either amass enough resources to subvert the
infrastructure itself, or attempt to guess the identity of the current approved node. Effectively, SOS allows the
creation and use of an arbitrary number of virtual topologies over the real network (which can, perhaps
perversely, viewed as a monoculture), which only legitimate users can use. The performance impact of doing
so is studied in [19]. To summarize, end-to-end latency is increased by a factor of 2, while remaining
impervious to the effects of a DoS attack.

2.3 Modifying the Behavior
Computer systems are to a large extent deterministic and this can be used as a means of identification
(fingerprinting), or, worse, as means of subverting a system by anticipating its response to various events.

Fingerprinting is a technique that allows remote attackers to gather enough information about a system so that
they can determine its type and software configuration (version of operating system, applications etc.) [14].
This information can then be used to determine what vulnerabilities may be present in that configuration and
thus better plan an attack.

Having a system with predictable behavior can have devastating consequences for its security. The most
celebrated example is the attack that exploited easy to guess TCP/IP packet sequence numbers [15]. By being
able to guess the sequence number of a TCP connection with a remote system, we can construct and transmit
replies to packets that we never receive (perhaps because a firewall prevents the remote system from talking to
us, or because we use a spoofed source address in our packets).

More recently, a denial of service attack based on the TCP retransmission time-out [16], allowed an attacker
to periodically send bursts of packets to the victim host, forcing the TCP subsystem on the victim host to
repeatedly time-out causing near-zero throughput. In this case as well, by changing the behavior of the TCP
implementation (randomizing the retransmission time-out), the attack can be mitigated.

The general Internet philosophy of “being conservative in what you send and liberal in what you accept”
(RFC1341), while enhancing interoperability, sometimes creates vulnerabilities by allowing greater ambiguity
in what a networked application may accept. Especially in the case of the Internet Protocols these minor
variations have been used as the basis of attacks (e.g. the overlapping fragment attacks and the small packet
attacks of the early 90s), and more recently as a means to facilitate fingerprinting.

OpenBSD's packet filter, pf (4), includes a “scrub” function that normalizes and defragments incoming
packets. This allows applications and hosts on the internal network some form of protection against hand-
crafted packets designed to trigger vulnerabilities. Another approach is to apply a similar technique to
outgoing packets in order to hide identifying features of the IP stack implementation [20]. A key part of the
process of the obfuscation process is protection against time-dependent probes. Different TCP
implementations have variations in their time-out counters, congestion avoidance algorithms, etc. By
monitoring the response of the host under inspection to simulated packet loss, the timing probe can determine
the version of the TCP implementation and by extension that of the OS. Also the use of various techniques for
rate limiting ICMP messages by the victim system, can provide hints to the attacker. The effectiveness of such

RTO-MP-IST-041 20 - 5

Dealing with System Monocultures

probes can be reduced, by homogenizing the rate of ICMP traffic going through the system that connects the
trusted network to the outside world, or by introducing random delays to ICMP replies.

3. SUMMARY AND CONCLUDING REMARKS

The commoditization of computer systems has dramatically lowered the cost of ownership of large collections
of computers. It is thus no longer economically feasible to have one-off configurations for individual
computers or networks, which, in turn, leads to monocultures, vulnerable to common-mode attacks. There is a
lively debate going on as to the effects of a diverse computing environment on security. One camp claims that
diversity is not required as it distracts from the task of producing a single secure configuration that can then be
widely deployed, thus spreading the development and security administration costs to a large number of
machines. The other camp claims that by standardizing the interfaces between subsystems, multiple
implementations can be deployed, thus reducing the risk of a single problem affecting all the deployed
systems. Our view is that both sides are fundamentally wrong. Having potentially huge numbers of identically
configured hosts invites disaster: no amount of effort can secure large software systems that have not been
built with security in mind. Even in cases where formal methods have been used in the design, field upgrades
and maintenance can weaken the security posture. On the other hand, attempting to introduce diversity
through the development of different software systems is not viable. Designing, developing and maintaining a
system is so expensive that once we have a working version we tend to use it widely. Even in critical systems
such as avionics, the same software is used on multiple hardware platforms (creating redundancy only at the
hardware level). The failure of the inaugural flight of the Ariane 5 launcher due to a software bug crashing
both navigation computers is proof that having the same software running on redundant hardware does not
provide true redundancy.

Our intention has been to demonstrate that the effects of diversity can be introduced through automated means.
The techniques described in this paper allow the introduction of small but critical variations to the these off-
the-shelf systems. While randomization is by no means the silver bullet that will solve the problem of generic
software, or system exploits (these can only begin to be addressed if we abandon the current ad hoc design
and development techniques) they do provide an effective method for mitigating attacks and exposing the
bugs that make such attacks possible.

4. REFERENCES

1. Prevelakis, V.: A secure station for network monitoring and control. In: Proceedings of the 8th USENIX
Security Symposium. (1999)

2. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q.: Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks. In: Proceedings of
the 7th USENIX Security Symposium. (1998)

3. Bulba, Kil3r: Bypassing StackGuard and StackShield. Phrack 5 (2000)

4. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: FormatGuard: Automatic Protection From printf
Format String Vulnerabilities. In: Proceedings of the 10th USENIX Security Symposium. (2001) 191-199

5. Etoh, J.: GCC extension for protecting applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/ (2000)

20 - 6 RTO-MP-IST-041

Dealing with System Monocultures

Dealing with System Monocultures

6. Wilander, J., Kamkar, M.: A Comparison of Publicly Available Tools for Dynamic Intrusion Prevention.
In: Proceedings of the Symposium on Network and Distributed Systems Security (SNDSS). (2003) 123-130

7. M. Conover and w00w00 Security Team: w00w00 on heap overflows.
http://www.w00w00.org/files/articles/heaptut.txt (1999)

8. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting Pointers From Buffer Overflow
Vulnerabilities. In: Proceedings of the 12th USENIX Security Symposium. (2003) 91-104

9. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address Obfuscation: an Efficient Approach to Combat a Broad
Range of Memory Error Exploits. In: Proceedings of the 12th USENIX Security Symposium. (2003) 105-120

10. DaCosta, D., Dahn, C., Mancoridis, S., Prevelakis, V.: Characterizing the Security Vulnerability
Likelihood of Software Functions . In: Proceedings of the 2003 International Conference on Software
Maintenance (ICSMy03). (2003) 61-72

11. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks With Instruction-Set
Randomization. In: Proceedings of the ACM Computer and Communications Security (CCS) Conference.
(2003)

12. Barrantes, G., Ackley, D., Palmer, T., Zovi, D.D., Forrest, S., Stefanovic, D.: Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks. In: Proceedings of the ACM Computer and
Communications Security (CCS) Conference. (2003)

13. Keromytis, A.D., Misra, V., Rubenstein, D.: Secure overlay services. In: Proceedings of the ACM
SIGCOMM Conference. (2002) 61-72

14. Smart, M., Malan, R., Jahanian, F.: Defeating TCP/IP Stack Fingerprinting. In: Proceedings of the 9th
USENIX Security Symposium. (2000) 229-240

15. Inc, S.N.: A simple TCP spoofing attack. http://niels.xtdnet.nl/papers/secnet-spoof.txt (1997)

16. Yang, G.: Low-rate denial-of-service (DoS) attacks to TCP. http://www.cs.ucla.edu/yangg/re-
search/research.htm (2003)

17. DaCosta, D., Dahn, C., Mancoridis, S., Prevelakis, V.: Characterizing the Security Vulnerability
Likelihood of Software Functions . In: Proceedings of the 2003 International Conference on Software
Maintenance (ICSMy03). (2003) 61-72.

18. Keromytis, A.D., Misra, V., Rubenstein, D.: Secure overlay services. In: Proceedings of the ACM
SIGCOMM Conference. (2002) 61-72.

19. Morein, W.G., Stavrou, A., Cook, D.L., Keromytis, A.D., Misra, V., Rubenstein, D.: Using Graphic
Turing Tests to Counter Automated DDoS Attacks Against Web Servers. In: Proceedings of the 10th ACM
International Conference on Computer and Communications Security (CCS). (2003) 8-19.

20. Smart, M., Malan, R., Jahanian, F.: Defeating TCP/IP Stack Fingerprinting. In: Proceedings of the 9th
USENIX Security Symposium. (2000) 229-240

RTO-MP-IST-041 20 - 7

20 - 8 RTO-MP-IST-041

Dealing with System Monocultures

1

20-1

System MonoculturesSystem Monocultures

AngelosAngelos KeromytisKeromytis
Computer Science Department Computer Science Department

Columbia UniversityColumbia University

VassilisVassilis PrevelakisPrevelakis
Computer Science Department Computer Science Department

Drexel UniversityDrexel University

2

20-2

OverviewOverview

Problem DefinitionProblem Definition

Threat MitigationThreat Mitigation

DiscussionDiscussion

QuestionsQuestions

3

20-3

MonoculturesMonocultures

Monocultures fail catastrophically and Monocultures fail catastrophically and
without warning!without warning!

Biology: Irish FamineBiology: Irish Famine
Computers: Common Mode AttacksComputers: Common Mode Attacks

Denial of Service AttacksDenial of Service Attacks
Code Injection AttacksCode Injection Attacks

Problem Problem notnot limited to Windowslimited to Windows

4

20-4

Example:Example:
Code Injection AttacksCode Injection Attacks

Objective: force victim process to execute Objective: force victim process to execute
your codeyour code
TechniquesTechniques

buffer overflowsbuffer overflows
race conditionsrace conditions

Why do these attacks succeed?Why do these attacks succeed?
common characteristicscommon characteristics
writewrite--once once -- exploit everywhereexploit everywhere

5

20-5

DiversityDiversity
Premise: Produce systems that are:Premise: Produce systems that are:

Sufficiently different so that common mode Sufficiently different so that common mode
attacks failattacks fail
Similar enough so as not to break existing Similar enough so as not to break existing
protocols or applications.protocols or applications.

Manually created diversity also failsManually created diversity also fails
LaborLabor intensiveintensive
Insecure (weakest link)Insecure (weakest link)
Limited (cannot provide rich enough diversity)Limited (cannot provide rich enough diversity)

Need to automate processNeed to automate process

6

20-6

Diversity through Diversity through
RandomizationRandomization

Utilize randomization mechanisms without Utilize randomization mechanisms without
requiring user intervention.requiring user intervention.
Modify the StructureModify the Structure

produce code that is functionally the sameproduce code that is functionally the same

Modify the Modify the BehaviorBehavior
TCP/IP sequence numbers, retransmission TCP/IP sequence numbers, retransmission
timeouttimeout

Modify the EnvironmentModify the Environment
Code RandomizationCode Randomization

7

20-7

Change the StructureChange the Structure

Add nonAdd non--functional code (NOP)functional code (NOP)
disrupts jump to disrupts jump to libclibc attackattack

Code ReorderingCode Reordering
need to maintain code execution semanticsneed to maintain code execution semantics

Stack Frame paddingStack Frame padding
obscure position of a procedureobscure position of a procedure’’s variables and s variables and
return addressreturn address

8

20-8

ExampleExample

Address Space Layout Randomization (Address Space Layout Randomization (PaXPaX
ASLR)ASLR)

protect against jumpprotect against jump--toto--libclibc attacksattacks
inserts inserts delta_mmapdelta_mmap offset in all memory offset in all memory
segment requests.segment requests.
delta_mmapdelta_mmap is random value that changes is random value that changes
between processesbetween processes

9

20-9

Change the Change the BehaviorBehavior

System FingerprintingSystem Fingerprinting
prevent attacker from identifying our systemprevent attacker from identifying our system

Exploit known techniquesExploit known techniques
CAM overflow attack relies on the hashing CAM overflow attack relies on the hashing
algorithm used by switchesalgorithm used by switches

OS generated idsOS generated ids
pidspids, RPC transaction ids, TCP etc., RPC transaction ids, TCP etc.

10

20-10

Change the EnvironmentChange the Environment

Systems depend on the runtime environmentSystems depend on the runtime environment
Attacks are based on assumptions about Attacks are based on assumptions about
environmentenvironment

Race conditionsRace conditions
Processor ArchitectureProcessor Architecture
Atomicity of operationsAtomicity of operations

11

20-11

Code Randomization ICode Randomization I

Code injection attacks assume a common platformCode injection attacks assume a common platform
Application, Operating System, Processor ArchitectureApplication, Operating System, Processor Architecture

How to create nonHow to create non--standard computer standard computer
architectures?architectures?

Change the mapping between Change the mapping between opcodesopcodes and instructionsand instructions
Have a perHave a per--process mappingprocess mapping

ImplementationImplementation
Change the processorChange the processor
Change the Operating SystemChange the Operating System

12

20-12

Code Randomization IICode Randomization II

AssumptionsAssumptions
IR applies to applications (CPU in user mode)IR applies to applications (CPU in user mode)
Need special register to contain mapping Need special register to contain mapping
identifier (GAV)identifier (GAV)
Need privileged instruction to load register Need privileged instruction to load register
(GAVL)(GAVL)

ProblemsProblems
BlocksizeBlocksize
AlignmentAlignment

13

20-13

Case Study: Case Study:
Code Randomization IIICode Randomization III

32 bit key

Instruction fetched
from memory

CPU
Instruction Decoding

LogicXOR

Implementation requires minimal modifications to the Implementation requires minimal modifications to the
processorprocessor
Cheap Cheap -- does not interfere with pipeliningdoes not interfere with pipelining

14

20-14

Other Considerations IOther Considerations I

Randomization works only if you have a Randomization works only if you have a
large space to hide.large space to hide.
PaXPaX ASLR does not use the entire 32 bit ASLR does not use the entire 32 bit
address spaceaddress space

12 low order bits are lost because of page 12 low order bits are lost because of page
alignmentalignment
4 top bits are reserved to prevent address space 4 top bits are reserved to prevent address space
fragmentationfragmentation
We are left with only 16We are left with only 16--bits of randomization!bits of randomization!

15

20-15

Other Considerations IIOther Considerations II

Cannot deal with:Cannot deal with:
software quality problemssoftware quality problems
is DOS acceptable?is DOS acceptable?
different techniques prevent different attacksdifferent techniques prevent different attacks
(e.g. IR does not prevent jump(e.g. IR does not prevent jump--toto--libclibc attacks)attacks)

16

20-16

Questions?Questions?

	Link to presentation:

